p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.3C42, C23.6Q8, M4(2).2C4, (C2×C8).5C4, (C2×C4).112D4, (C22×C8).3C2, C2.3(C8.C4), C4.20(C22⋊C4), C22.16(C4⋊C4), (C2×M4(2)).7C2, C2.6(C2.C42), (C22×C4).103C22, (C2×C4).64(C2×C4), SmallGroup(64,22)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.C42
G = < a,b,c | a4=1, b4=c4=a2, bab-1=a-1, ac=ca, cbc-1=a-1b >
Character table of C4.C42
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | 8O | 8P | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | -i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | i | -i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -i | -i | i | i | -i | i | i | -i | -i | -1 | i | i | -i | 1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | -i | i | -i | -i | i | i | -1 | -i | 1 | -1 | 1 | i | -i | i | linear of order 4 |
ρ9 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | i | -i | i | i | -i | -i | -1 | i | 1 | -1 | 1 | -i | i | -i | linear of order 4 |
ρ10 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | i | i | -i | -i | i | -i | -i | i | -i | 1 | i | i | -i | -1 | -1 | 1 | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | -i | -i | i | i | -i | i | i | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -i | -i | i | i | -i | i | i | -i | i | 1 | -i | -i | i | -1 | -1 | 1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | i | -i | i | i | -i | -i | 1 | -i | -1 | 1 | -1 | i | -i | i | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | i | i | -i | -i | i | -i | -i | i | i | -1 | -i | -i | i | 1 | 1 | -1 | linear of order 4 |
ρ15 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | -i | i | -i | -i | i | i | 1 | i | -1 | 1 | -1 | -i | i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | i | i | -i | -i | i | -i | -i | linear of order 4 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | √2 | -√-2 | √-2 | -√2 | -√2 | -√-2 | √2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | √-2 | √2 | √2 | √-2 | -√-2 | -√2 | -√-2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | √-2 | -√2 | -√2 | √-2 | -√-2 | √2 | -√-2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | -√2 | -√-2 | √-2 | √2 | √2 | -√-2 | -√2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | -√-2 | √2 | √2 | -√-2 | √-2 | -√2 | √-2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | -√-2 | -√2 | -√2 | -√-2 | √-2 | √2 | √-2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | -√2 | √-2 | -√-2 | √2 | √2 | √-2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ28 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | √2 | √-2 | -√-2 | -√2 | -√2 | √-2 | √2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
(1 7 5 3)(2 4 6 8)(9 11 13 15)(10 16 14 12)(17 23 21 19)(18 20 22 24)(25 31 29 27)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 17 27 14 5 21 31 10)(2 24 32 9 6 20 28 13)(3 19 29 16 7 23 25 12)(4 18 26 11 8 22 30 15)
G:=sub<Sym(32)| (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,27,14,5,21,31,10)(2,24,32,9,6,20,28,13)(3,19,29,16,7,23,25,12)(4,18,26,11,8,22,30,15)>;
G:=Group( (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,27,14,5,21,31,10)(2,24,32,9,6,20,28,13)(3,19,29,16,7,23,25,12)(4,18,26,11,8,22,30,15) );
G=PermutationGroup([[(1,7,5,3),(2,4,6,8),(9,11,13,15),(10,16,14,12),(17,23,21,19),(18,20,22,24),(25,31,29,27),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,17,27,14,5,21,31,10),(2,24,32,9,6,20,28,13),(3,19,29,16,7,23,25,12),(4,18,26,11,8,22,30,15)]])
C4.C42 is a maximal subgroup of
C23.12SD16 C23.13SD16 C24.7Q8 Q8.C42 D4.3C42 C24.19Q8 C24.9Q8 C42.322D4 C42.104D4 C24.10Q8 M4(2).40D4 M4(2).43D4 M4(2).44D4 M4(2).48D4 M4(2).49D4 M4(2).3Q8 C4.10D4⋊3C4 C4.D4⋊3C4 C42.428D4 C42.107D4 C42.430D4 M4(2).4D4 M4(2).5D4 M4(2).6D4 C4⋊C4.96D4 C4⋊C4.97D4 C4⋊C4.98D4 (C2×C8).55D4 (C2×C8).165D4 C42.9D4 M4(2).Q8 M4(2).2Q8 C22⋊C4.Q8
C4p.C42: C4×C8.C4 C8.6C42 C12.10C42 C12.4C42 C20.40C42 C20.34C42 C20.10C42 M4(2).F5 ...
C4.C42 is a maximal quotient of
M4(2)⋊C8 C42.23D4 C42.25D4 C24.2Q8 C24.3Q8 C42.388D4 C42.370D4 C20.10C42 M4(2).F5
(C2×C4).D4p: C42.385D4 C42.389D4 C12.10C42 C12.4C42 C20.40C42 C20.34C42 C28.10C42 C28.4C42 ...
Matrix representation of C4.C42 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 4 | 0 |
0 | 15 | 13 |
4 | 0 | 0 |
0 | 8 | 15 |
0 | 0 | 9 |
13 | 0 | 0 |
0 | 2 | 0 |
0 | 10 | 8 |
G:=sub<GL(3,GF(17))| [1,0,0,0,4,15,0,0,13],[4,0,0,0,8,0,0,15,9],[13,0,0,0,2,10,0,0,8] >;
C4.C42 in GAP, Magma, Sage, TeX
C_4.C_4^2
% in TeX
G:=Group("C4.C4^2");
// GroupNames label
G:=SmallGroup(64,22);
// by ID
G=gap.SmallGroup(64,22);
# by ID
G:=PCGroup([6,-2,2,-2,2,2,-2,48,73,103,650,158,117,1444,88]);
// Polycyclic
G:=Group<a,b,c|a^4=1,b^4=c^4=a^2,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b>;
// generators/relations
Export
Subgroup lattice of C4.C42 in TeX
Character table of C4.C42 in TeX